6 research outputs found

    Morphological Inflection with Phonological Features

    Full text link
    Recent years have brought great advances into solving morphological tasks, mostly due to powerful neural models applied to various tasks as (re)inflection and analysis. Yet, such morphological tasks cannot be considered solved, especially when little training data is available or when generalizing to previously unseen lemmas. This work explores effects on performance obtained through various ways in which morphological models get access to subcharacter phonological features that are the targets of morphological processes. We design two methods to achieve this goal: one that leaves models as is but manipulates the data to include features instead of characters, and another that manipulates models to take phonological features into account when building representations for phonemes. We elicit phonemic data from standard graphemic data using language-specific grammars for languages with shallow grapheme-to-phoneme mapping, and we experiment with two reinflection models over eight languages. Our results show that our methods yield comparable results to the grapheme-based baseline overall, with minor improvements in some of the languages. All in all, we conclude that patterns in character distributions are likely to allow models to infer the underlying phonological characteristics, even when phonemes are not explicitly represented.Comment: ACL 2023 main conference; 8 pages, 1 figur

    UniMorph 4.0:Universal Morphology

    Get PDF

    UniMorph 4.0:Universal Morphology

    Get PDF

    UniMorph 4.0:Universal Morphology

    Get PDF

    UniMorph 4.0:Universal Morphology

    Get PDF
    The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet

    SIGMORPHON鈥揢niMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection

    No full text
    The 2022 SIGMORPHON鈥揢niMorph shared task on large scale morphological inflection generation included a wide range of typologically diverse languages: 33 languages from 11 top-level language families: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe. We emphasize generalization along different dimensions this year by evaluating test items with unseen lemmas and unseen features separately under small and large training conditions. Across the five submitted systems and two baselines, the prediction of inflections with unseen features proved challenging, with average performance decreased substantially from last year. This was true even for languages for which the forms were in principle predictable, which suggests that further work is needed in designing systems that capture the various types of generalization required for the world鈥檚 languages
    corecore